
化工污水处理工艺流程_空气悬浮风机
化工污水处理工艺流程:化工厂废水处理方法及流程介绍
原标题:化工厂废水处理方法及流程介绍
化工厂废水处理方法及流程是什么样的?
我国作为一个工业大国,化工厂可是非常的多,在带动经济飞速发展的同时,也产生了污染问题,其中一个就是化工厂废水问题。
废水的处理是不容忽视的,是建设生态文明社会必须要做好的事情,那么,化工厂废水处理方法及流程是什么样的?接下来为大家介绍。
(一)物理处理法
所谓物理处理法就是对废水中的溶解性小物体和悬浮污染物进行回收和分离。由于其物理性质不同,可分为重力分离法、筛滤法和离心法等。物理处理法成本低,但经过处理后废水中污染物含量还是相对较高。
(二)化学处理法
化学处理法是通过氧化还原反应或中和有毒有害物质将其分解成无毒、无害的物质。例如,通过添加化学物质来产生化学反应(常见的中和反应、氧化还原反应和混凝反应)。在化工废水处理过程中采用化学实验的方法,所使用的设备都具备配套的水池、灌、塔和一些辅助设备。化学处理法具有低投资、低成本、操作简单的优点,一个成熟的技术优势,能承受量大、含量高的负荷冲击,可适用于各种化工废水处理,但化工原料需要不断的消耗和产生污泥、排出水回用是困难的,并且占地面积较大。
(三)物理化学法
以传质作用来处理废水时,不单单涉及到化学作用,而且还具有相关的物理作用,故称为物理化学法。它是一种将物理作用与化学作用相结合的污水理化处理方法来净化废水。这些方法主要包括萃取、汽提、剥离、吸附、电渗析、离子交换和反渗透等等。使用该方法前,先应该对废水进行预处理,去除废水中的油、悬浮物和有害气体等,必要时还需要调整pH值。
三种处理方法,物理处理法,化学处理法,物理化学法,各有其优点,使用哪一种比较好,还得具体情况具体分析,靠谱的做法还是找一个专业的环保公司来合作较好,而我们绿日环境就是专业的,有10年经验了,绝对靠谱,有需要的朋友联系我们吧。
内容参考来源:绿日环境
:
化工污水处理工艺流程:化工废水处理工艺流程介绍
原标题:化工废水处理工艺流程介绍
【化工废水处理一吨多少钱】化工废水的一般处理流程
很多人会问:化工废水处理一吨多少钱?其实,要想了解这个问题,就得知道化工废水处理时使用的是哪种类型的工艺,不同工艺,价格自然不同。
而化工废水的污染性是很强的,因为其含有多种污染物,成分相当复杂,像常见的污染物就是强酸、强碱、纤维素、半纤维素、醇类、果胶等,另外还有多种的有毒污染物,所以,不可小觑,这是必须要处理妥善的一种废水,那么接下来就为大家介绍一下化工废水的一般处理流程,一起来看看吧。
对于化工废水处理, 一般采用以生物法为主的物理-化学-物理混合处理工艺。
一般处理流程如下:
由于化工废水呈酸性或碱性,所以在处理前必须中和,使其pH在中性范围内。一般对酸性废水加碱中和,对碱性废水加酸中和,有条件的地方也可采用酸碱废水混合中和。废水经pH调节后,需进行预处理去除SS及油类物质,如利用气浮除油、混凝沉淀除悬浮物及部分有机物等。预处理过程能改善废水的可生化性。经预处理后的废水进人生物处理单元,大部分的有机物及其它污染物质得到有效去除。为了使出水达到更高标准或回用要求,需进行深度处理,如活性炭吸附、砂滤、生物炭池等。
厌氧-好氧处理工艺能充分发挥厌氧微生物抗冲击负荷能力并可提高污水可生化性,兼有利用好氧微生物生长速度快、出水水质好、运行费用低的优点,故在有机废水处理中获得广泛应用。如董良飞等采用ENSBR(延时序批式生物氧化硝化反应器)-BDAR(膜法生物兼氧反硝化反应器)-BCOR(完全混合式生物接触氧化反应器)工艺处理某化纤公司高含氮己内酰胺生产废水,在污泥负荷为0.15-0.28g/(g.d)、进水COD不高于6200mg/L、NH3-N质量浓度不高于560mg/L的情况下,出水COD不高于150mg/L、NH3-N质量浓度不高于20mg/L,COD和NH3-N的去除率分别达到98%和96%,系统可同时除碳脱氮。采用UASB-水解酸化-接触氧化-MBR工艺,处理某化纤厂COD浓度为3万mg/L的PET废水,终出水COD可达到100mg/L以下,各项指标都达到了《污水综合排放标准》的一级标准。
一体式氧化沟
氧化沟是延时曝气的一种特殊形式。它的池体狭长,池深较浅,在沟槽中设有表面曝气装置,起到曝气和搅拌两个作用。它把连续环式反应池用作生物反应池,污泥混合液在该反应池中以一条闭台式曝气渠道进行连续循环,集曝气、泥水分离和污泥回流功能为一体,无需建造单独的二沉池。其主要优点有:工艺简便、设备少,管理方便耐冲击负荷,适应能力强处理效果好,不仅能去除95%以上的BOD,还可以同时脱除部分氮和磷;污泥沉降性能好,污泥产生量少;动力消耗较低。
以上就是化工废水的一般处理流程的介绍了,可能内容有点深奥,不够没关系,如果还有不懂的,可以来找我们,我们绿日环保是专业做污水处理的环保公司,可以提供污水处理设备跟承接污水处理工程,有这方面需要的朋友欢迎来联系。
内容参考来源:绿日环保
:
化工污水处理工艺流程:煤化工行业废水处理工艺流程研究
随着工业的进步和社会环保意识的提高,水环境的污染与经济发展之间的矛盾日益突出。为切实加大水污染的防治力度,保障国家水安全,环保部于2020年制定了《水污染防治行动计划》。为全面控制污染物的排放,必须狠抓工业的污染防治工作,整治污染严重的行业,集中治理工业区的水污染。
身为世界上最大的产煤和耗煤大国,尽管国务院颁布的《能源发展战略行动计划2020—2020》提出:到2020年,将煤炭消费比重控制在62%以内。但由于我国的能源结构中仍以煤炭为主,工业的发展仍离不开煤炭。由于煤化工的一大特点是耗水量大,所以维持煤化工的生产过程必然会产生大量的污水。而我国的煤炭资源和水资源却呈逆向分布,在煤炭资源丰富的地区,水资源往往十分匮乏。因此,工艺合理,经济可行,使经过处理的污水能够循环利用的废水处理方案会给高耗水的煤化工企业带来巨大的经济效益、社会效益和环境效益。
1煤化工废水的来源
煤化工是指以煤为原料,经化学加工使其转化为气体、液体和固体燃料,以及相关化学品的过程。煤化工主要包括煤的气化、液化、低温干馏和高温干馏(焦化)及对以上过程中得到的中间品和产品进一步精制及深加工的过程,例如煤的焦化和焦油的加工精制等。
煤是化学成分非常复杂的物质,因此煤化工生产过程必然有大量污水产生。这些污水主要来自于加工原煤带人的非结合水及结合水,在生产过程中引入的生产补水和由蒸汽冷凝中形成的废水,如产品精制和化学品加工过程中分离出的污水。
2煤化工废水的组成及危害
煤化工过程的废水产量、污染物成分及含量随着原煤种类、产地、煤加工工艺、化学产品精制的方法、加工深度和装置管理水平的不同而变化极大。废水中往往含有数十种无机污染物和有机污染物,包括固体悬浮物、氨及铵盐、硫化物、氰化物、重金属;易降解的有机物,如脂肪族化合物、酚类化合物和苯类化合物;可降解类有机物,如吡咯、萘、呋喃、咪唑等;难降解的有机物主要有吡啶、咔唑、联苯、三联苯等多环芳香化合物和含S、N、0的杂环化合物。
废水中的含氮物质能导致水体富营养化,藻类大量繁殖生长,以致水体缺氧,水质恶化变臭。废水中的氨氮在水体中还能转化成硝态氮,婴幼儿饮用含有一定浓度硝态氮的水会致白血病。废水中的含碳化合物多数都是耗氧类物质,会严重消耗水体中的溶解氧而导致水体的腐化。废水中的硫化物也是产生酸雨的物质之一。废水中的酚类化合物则是原型质毒物,浓度过高就会削弱水中微生物对污染物的降解作用。酚类化合物可通过皮肤、黏膜和口腔接触侵入人体造成累积性慢性中毒。废水中的部分有机物的化学性质很稳定,微生物难以利用,且氰化物、芳环、稠环、杂环化合物对微生物的毒害作用很强,故此类废水的直接可生化性极差。因此,若将煤化工废水不加处理或处理不达标就直接排放到自然界中,不仅会对土壤、水源、空气造成严重污染,还会影响动植物的生长和人类的健康。有些物质还会在动植物的体内富集,使其浓度浓缩多倍,最终通过食物链危害人的身体健康,严重者可以致癌致命。随着国家环保要求的不断提高,煤化工废水的处理已经成为一个影响该行业健康、持续发展的重要因素。
本文所述某石化公司煤焦油加氢装置所产生的废水主要来自煤的焦化产品——焦油的加工精制过程。该类废水不仅水量大,而且成分复杂、危害大,在煤化工行业中非常典型,是焦油加工企业治理的重点。该废水的pH值为7~11,酚的含量高达15000—20000mg/1,油含量3000~5000mg/l,硫化物和氨氮含量均为2500~5000mg/l,这些污染物常表现出极高的coD值,可达60000~70000mg/l。
3污水排放标准
国家和部分地方的管理部门对各地区、各行业的污水排放要求出台了控制标准和法律法规。1998年1月1日后建设的煤焦油加工企业如所在地方还没有颁布相关的法规,就应按的《污水综合排放标准》(GB8978—1996)执行(见表1)。
4废水处理方案
煤化工废水污染物的成分和含量千差万别,处理流程也各不相同。针对某一类废水的处理方法和流程,均需根据废水的水质、水量、成分的回收价值、排放标准、各种废水处理技术的特点及经济条件等因素,通过调研、分析、技术经济比较后再确定,必要时还要开展相关的试验研究来确定适宜的处理方案。
煤焦油加氢废水的净化过程主要体现在去除废水中的酚类物质、氨氮、硫化物和油类有机物。目前工业上成熟应用的单一废水处理技术对废水量、污染物种类、污染物浓度等都有一定的适用范围,且各种污染物在水中的脱除还存在着相互影响和相互干扰。因此,废水中的污染物的指标不可能仅通过单一处理技术就达到排放标准的要求。故探究一整套技术成熟可靠、工艺流程合理、设备结构简单、工程投资低、运行费用少、易维护、能长期稳定运行的煤化工废水处理流程已成为国内外煤化工企业的重大课题。
煤焦油加氢废水因含有较高的酚、油类有机物、硫化物及氨氮,设计废水净化流程时应该结合主体装置(焦油减压分馏塔)的操作特点及相关化学产品的加工工序(粗酚精制),首先通过物理分离去油,再经过萃取脱酚、蒸氨等预处理来降低污染物的浓度,减小废水对微生物的毒性。同时,回收高含量、高附加值的物质。再对所得的低浓度、低毒性的废水进行生化处理,这样做不仅会降低废水的生化处理成本,还能提高污染物的脱除效果。适宜的生化处理技术在有效脱除废水中氮化物的同时,对氰化物、苯酚类及苯类物质也有较好的去除作用,可以达到国家规定的污水排放标准。但对一些难降解的有机污染物,如喹啉类、吲哚类、煤焦油加氢废水吡啶类、咔唑类等物质则很难实现完全降解,导致煤化工装置产生的污水经过生化反应后的COD难以达到一级排放标准。因此,经过生化处理后的污水仍需进一步进行深度处理,直至达到循环使用的品质然后送往用户处,或达到排放标准后排入自然界中。故废水的物化预处理+生化处理+深度处理的多方法联合处理流程应该是煤化工废水处理方案的基本发展方向(见图1)。
5废水处理技术的应用循环利用或达标排放
5.1物化预处理:根据工程经验,经过生化法处理的废水含酚量应该低于300mg/l。且水中不得含有氨、焦油或油类物质,否则就会抑制微生物的生长,影响对污染物的分解,甚至造成微生物的中毒死亡,降低废水的处理效果。废水中的酚类和油类物质同属有机物,具有“相似相容”的性质,而酚还属于Lewis酸,易与极性水分子之间形成氢键,增加其在水中的溶解度,进而促进油水的恶性乳化。因此,对酚类和油类物质的去除过程存在严重的相互干扰,需要通过分步交替处理以便使废水中的污染物达到可生化处理要求。(1)脱酚工业生产中,酚浓度为1000mg/l以上的废水称为高浓度含酚废水,回收利用其中的酚类物质可增加废水处理的经济效益。目前,工业上常用来处理高浓度含酚废水的方法主要集中在物理分离方法,如:蒸汽吹脱除酚、溶剂萃取脱酚等。结合本文煤焦油加氢主体装置的操作特点,在处理煤焦油加氢废水时可优先采用溶剂萃取方法脱酚,且为降低萃取剂的分离成本,所选用的溶剂应尽量从煤焦油分馏系统或煤焦油加氢系统的中间产物或产品中选取。经模拟计算,本文中煤焦油加氢装置废水中的酚可由20000降低到1500mg/1以下。在工程实践中,可用于进行低浓度含酚废水处理的方法较多(见表2),需结合主体装置的操作特点,选择操作方便、投资成本和运行费用低的脱酚技术。
(2)除油:煤焦油加氢废水在脱酚过程中,若油含量较高会影响装置的平稳运行及脱酚效果。例如:在用溶剂萃取法脱酚时,油会与水作用产生乳化物,降低脱酚效率;在用蒸汽法脱酚时,油的存在经常堵塞设备。因此,对含酚含油废水进行处理时应优先除油。对于油含量较高(指含油量500ppm以上)的废水,工业上常用的除油方法有气浮隔油法、澄清过滤法、精馏法和溶剂萃取法等。深度除油(指由200ppm除油到50ppm以下)的方法有吸附过滤法、旋流沉降法等。
(3)蒸氨脱硫:一般地,煤化工废水中的氮以有机氮、氨氮、亚硝酸盐和硝酸盐四种形式存在。在煤焦油加氢废水中,氮主要以氨氮、有机氮的形式存在,氨氮占总氮的60%~70%,而绝大部分的有机氮也能在微生物的作用下最终转化为氨氮。氨氮经一系列的生化作用后会转化为氮气从水中逸出。但生化作用对废水中高浓度含氮污染物的去除率很低,不能满足国家规定的污染物综合排放标准,因此煤焦油加氢废水在生化处理之前需先脱硫脱氨。
目前,国内外酸l生废水脱硫脱氨的主要工艺为汽提法。煤焦油加氢废水物化预处理若采用先蒸氨脱硫,后除油脱酚的工艺流程,相比先除油脱酚,后蒸氨脱硫的工艺流程会损失大量的酚。同时,废水中高含量的油酚也将影响蒸氨脱硫汽提塔的工作效率。因此,在流程上应优先选择深度除油脱酚后的酸|生废水经汽提塔汽提蒸氨脱硫。在塔顶汽提出H2S,分液后回收单质硫;在侧线采出氨水,精制成浓氨水或经氨压缩机精制出液氨产品。汽提塔多为常压操作,操作温度为100~120℃,H2s、NH,的脱除率均可达到99.5%,塔底废水中H2S≤10ppm、NH3≤50ppm。具体联系污水宝或参见更多相关技术文档。
5.2生化处理:生化法污水处理工艺因处理量大,处理成本低,无二次污染,在今后较长的一段时间内,仍将是处理有机废水的主要方法。经过物化预处理后的煤焦油加氢污水将在生化处理装置中去除大部分的氨氮、油、酚等。
5.3深度处理:煤化工废水中的污染物成分复杂多变,难降解的大分子有机物含量高。因此,仅依靠常规的生化处理方法很难达到净水循环利用的水质标准或国家规定的排放标准,最主要的表现为废水的c0D和色度很少能达标。针对此情况,应该选择合适的深度处理技术,如电催化氧化处理工艺,保证出水达标排放或循环利用。其它深度处理技术中适合采用的还有混凝沉淀、过滤、臭氧氧化、活性炭过滤及超滤等。
6废水处理的工艺流程
基于以上对煤化工废水特点、废水处理技术及方案的详细分析,针对以煤焦油加氢废水为代表的煤化工废水处理过程,结合煤焦油加氢装置及其分馏系统的操作特性和产品分布,经AspenPlus流程模拟软件辅助模拟计算,笔者设计出一套针对对煤化工废水处理具有指导意义的工艺路线(见图2)。
7结语
(1)针对煤化工废水产量大,污染物种类复杂多变、浓度高、毒性大等特点,利用多种方法联合分段处理煤化工的废水,发挥各段的优势,将有助于提高废水的处理效率,降低工程投资,而且这也将成为煤化工废水处理技术的基本发展方向。(2)结合主体装置的工艺过程、设备组成、操作特性和产品分布,尽量选择利用主体装置的现有设备和产品来物化分离废水中的污染物,可降低企业环保项目的投资成本和运行费用,提高企业的经济效益。(3)将煤化工废水中的高浓度、高附加值的污染物回收利用,并将净化后的水循环利用,既符合国家可持续发展的要求,又能提高企业环保项目的经济效益,降低企业的经济负担和社会负担。(来源:谷腾环保网 作者:梁翠翠等)
化工污水处理工艺流程:石油化工废水处理工艺
石油化工废水中主要污染物一般可概括为烃类、烃类化合物及可溶性有机和无机组分。其中,可溶性无机组分主要是硫化氢、氨类化合物及微量重金属;可溶性有机组分大多能被生物降解,也有少部分难以被生物降解,或不能被生物降解,如原油、汽油和丙烯等。国内大多数炼油污水处理厂采用“老三套”处理工艺,即隔油—气浮—生化,或其改良、改进工艺。随着我国劣质高酸原油加工量的逐年增加,常规“老三套”处理工艺已不能满足当前的废水排放标准。环烷酸是高酸原油加工废水的特征污染物,主要由环状和非环状饱和一元酸构成的复杂化合物,其通式为 CnH2n+zO2,含有少部分芳香族酸以及 N、S等杂原子,相对分子量在 120~700。环状结构的环烷酸以环戊烷和环己烷为主,非环状环烷酸具有比一般支链脂肪酸难降解的烷基侧链结构。环烷酸具有难挥发、难生化降解、有表面活性等特点,是高酸原油废水处理工艺复杂、处理难度高的主要原因之一。
某炼油厂设计加工高酸重质原油,其配套污水处理厂存在污染物处理效果不稳定,出水COD难以持续稳定达标排放等问题。对原有工艺流程升级改造,确保污水处理厂出水水质可稳定达标排放,以期为同类项目提供借鉴。
1 污水处理厂概况
1.1 设计水质及流程
1.1.1 设计进出水水质
炼油厂各生产装置排放的含油、含盐污水经收集排放至污水处理厂混合后集中处理,污水处理厂设计进出水水质标准见表1。
1.1.2 设计流程
污水处理厂工艺流程如图 1所示。
表 1 污水处理厂设计进出水水质标准
1.2 运行现状
1.2.1 石油类污染物的去除效果
污水处理厂界区入口处石油类污染物的平均浓度为 53.74mg/L,最大值为 155.00mg/L;经调节罐隔油处理后,石油类污染物的平均浓度为 63.77mg/L,最大值为 114.00mg/L;经斜板隔油—两级气浮后,出水石油类污染物的平均浓度为 3.57mg/L,最大值为 9.36mg/L。各处理单元石油类污染物监测指标见图 2。由图 2可知,石油类污染物可达标排放。
1.2.2 COD的去除效果
污水处理厂界区入口处 COD的平均值为3887mg/L,最大值为 6631mg/L;经隔油处理、均质调节后,COD的平均值为1947mg/L,最大值为2268mg/L;经 A2O生化池 +MBR+臭氧氧化后,COD的平均值为 107mg/L,最大值为 139mg/L。各处理单元氨氮监测指标见图 3。由图 3可知,进水 COD大幅超设计标准,处理后污水不能达标排放。
1.2.3 氨氮去除效果
污水处理厂界区入口处氨氮的平均浓度为56.33mg/L,最大值为 79.00mg/L;经隔油处理、均质调节后,氨氮的平均浓度为57.8mg/L,最大值为76.00mg/L;经 A2O生化池 +MBR+臭氧氧化后,氨氮的平均浓度为1.42mg/L,最大值为2.00mg/L。
各处理单元氨氮监测指标见图 4。由图 4可知,进水氨氮偶尔超出设计标准,但能稳定达标排放。
13 存在问题
该炼油厂生产时采用高硫重质原油,污水处理厂实际进水 COD远超设计要求,导致处理后污水COD达不到排放标准。污水处理厂外排管线设有同在线监测仪联锁的自动切断阀,当监测水质超标时,将自动切断外排管线,导致污水处理厂停产,进而影响生产装置正常运行。因此,必须对现有污水处理厂进行升级改造。
2 升级改造工艺
2.1 污水水质分析
为了解现有各处理工艺单元出水中污染物组分,对界区入口污水、二沉池出水、MBR出水采用气相色谱质谱联用仪(GC/MS)分析检测。
2.1.1 界区入口污水
界区入口污水酸性及碱性、中性萃取物的 GC/MS分析结果见图 5和图 6。由图 5和图 6可知,其主要污染物为环烷酸、低级脂肪酸、含氮杂环化合物及苯酚类化合物。
2.1.2 二沉池出水
生化二沉出水酸性及碱性、中性萃取物的 GC/MS分析结果见图 7和图 8。
由图 7和图 8可知,其主要污染物为环烷酸、硫代酰胺、环烯(烷)烃、含氮杂环化合物及邻苯二甲酸酯类。
2.1.3 MBR出水
MBR出水酸性及碱性、中性萃取物的 GC/MS分析结果见图9和图10。由图9和图10可知,其主要污染物为环烷酸、茚酮类、环烯(烷)烃、含氮杂环化合物及邻苯二甲酸酯类。
2.2 升级改造的目的
2.2.1 去除难降解有机物
由 2.1.3节可知,污水处理厂处理后污水中主要污染物为环烷酸、茚酮类、环烯(烷)烃、含氮杂环化合物及邻苯二甲酸酯类,而环烷酸对 COD的贡献占 30%以上,其相对分子质量集中在 300左右,大多为 C18的环烷酸。因此,本次升级改造应选择对环烷酸、茚酮类、环烯(烷)烃、含氮杂环化合物及邻苯二甲酸酯类有明显去除效果的工艺。
2.2.2 削减处理负荷
污水处理厂来水水质远超原设计进水水质标准,因此需新增处理单元,将来水中大幅超标污染物去除,以确保现有污水处理厂生化单元在设计负荷条件下运行。
2.3 工艺的选择
本次升级改造重点是加强环烷酸的去除。根据肖梓军等的研究结果,目前国内外降解环烷酸的方法主要有生物法、Fenton氧化法、臭氧氧化法和超临界氧化法。
2.3.1 环烷酸处理概况
2.3.1.1 生物法
生物法是利用微生物、植物以及植物微生物联合作用来降解转化污染物,从而使废水得到净化。
生物法具有处理费用低、对环境影响小、应用范围广等特点。
赵剑强等研究表明,环烷酸浓度小于2000mg/L可被厌氧微生物降解,但产甲烷菌只能降解具有单环和双环结构的环烷酸,当环数达到 3个及以上时无法进行无氧呼吸的降解作用。
刘庆龙等的研究表明,能降解环烷酸的微生物大部分是好氧微生物,其利用环烷酸作为生长发育的碳源和能源进行呼吸作用,在各种氧化还原酶的作用下将环烷酸降解成 CO2和 O2,或是毒性和相对分子质量较小的有机物,利用产生的中间产物来合成自身组分,释放能量以维持自身正常的新陈代谢和生长发育。
2.3.1.2 Fenton氧化法
Fenton氧化的反应机理是 H2O2与 Fe2+反应分解生成羟基自由基(·OH)和氢氧根离子(OH-),并引发联锁反应从而产生更多的其他自由基,然后利用这些自由基进攻有机质分子,从而破坏有机质分子并使其矿化直至转化为 CO2、H2O等无机质。
Lu等采用 Fenton法降解石油污染土壤中的环烷酸,研究表明,环烷酸提取量从14800mg/kg降至 2300mg/kg,总去除率达 84.5%。Fenton氧化法的处理效果好,但在处理过程中会引入大量金属离子、产生大量化学污泥,不利于后续处理。
2.3.1.3 臭氧氧化法
高级氧化主要利用在催化剂作用下氧化剂分解产生的强氧化性·OH 来氧化水中的有机污染物。臭氧氧化法是高效的高级氧化技术,具有氧化性强、反应速率快、不产生二次污染等优点。臭氧在水中会发生反应,产生 HO2·及·OH。臭氧降解环烷酸类难降解有机物的最适 pH为碱性,通过臭氧氧化作用,将环烷酸中的多环结构氧化成少环、单环或链状结构。Scott等研究表明,臭氧氧化能有效去除高分子环烷酸(n≥22),去除率可达70%。
臭氧氧化技术具有处理效果好、易于操作、成本较低等特点。但该技术同样存在设备要求高、需对剩余臭氧气体进行处理等缺点。
2.3.1.4 超临界水氧化技术(SCWO)
超临界水氧化技术是能有效处理有毒、有害物质的高浓度难降解有机废水处理技术。水在临界状态(T>374℃,P>22.2MPa),并有过量氧的参与下会产生具有强氧化性的 HO2·及HO·,会将环烷酸等难降解有机物彻底分解氧化为 CO2和 H2O等小分子物质。Mandial等研究发现,在没有催化剂条件下,超临界水对环烷酸的去除率可达 83%。
超临界水氧化技术对设备和能源消耗要求较高,其操作运行环境危险性较大,因此不适合在大型项目中推广应用。
2.3.2 升级改造工艺
根据文献资料并结合项目现场开展的中试试验结果,确定本次升级改造工艺:界区入口污水经原有调节罐调节,而后依次经斜板隔油、两级气浮去除石油类;气浮出水经泵提升至新增的 BAF,其出水经泵提升至升流式水解酸化罐(原均质罐改造);水解酸化出水依次经原有 A2O生化池、二沉池及 MBR;MBR出水经泵提升至臭氧催化氧化塔(原臭氧氧化塔改造),其出水依次经生物活性炭、消毒后达标排放。升级改造后流程见图 11。
升级改造说明:1)新增 BAF,以削减界区入口污水有机负荷(COD)为目的,提高系统抗冲击能力,确保后续 A2O生化池等处理单元在原有设计工况下平稳运行。畅显涛等研究表明,固定化曝气生物滤池(G-BAF)可将高浓炼油(COD为 11278mg/L)处理至 COD低于 100mg/L。2)原有均质调节罐改为升流式水解酸化罐,目的是将大分子污染物开环断链为小分子,提升废水可生化性(B/C)并降低对好氧微生物的毒性,从而确保后续 A2O生化池等处理单元平稳运行。3)原臭氧氧化塔内装填专用催化剂,以增强臭氧对污染物的分解去除效果。
3 升级改造后的运行效果
3.1 COD去除效果
曝气生物滤池和水解酸化以及臭氧催化氧化对COD去除效果分别见图 12和图 13。
由图 12可知,升级改造后调节罐出水 COD平均值为 4073.5mg/L,最大值为 5395.0mg/L;经曝气生物滤池好氧氧化后出水 COD平均值为 902.5mg/L,最 大 值 为 1790.0 mg/L,COD 去 除 率 为77.8%;经水解酸化后出水 COD平均值为 598.0mg/L,最大值为765.0mg/L,COD去除率为33.7%。
曝气生物滤池抗冲击负荷能力强,进水 COD为3000~5500mg/L波动条件下,出水 COD趋于平稳;曝气生物滤池大幅削减废水有机污染物,对COD去除率高达 77.8%;水解酸化虽然对 COD的去除率较低,但其实现“水质稳定器”作用,使出水COD平稳。
由图 13可知,升级改造后 MBR出水 COD平均值为165.6mg/L,最大值为231.0mg/L;经臭氧催化氧化后出水 COD平均值为 50.6mg/L,最大值为64.0mg/L,COD去除效率为 69.4%。原设计的臭氧氧化塔,装填催化剂形成臭氧催化氧化后,在相同塔容、水力停留时间条件下,臭氧对污水中有机物的氧化效率更高并能保证出水 COD平稳。
3.2 水解酸化运行效果
BAF和水解酸化出水 COD、BOD5检测结果见表 2。
表 2 BAF、水解酸化出水指标
BAF出水可生化性(B/C)较差,而经水解酸化后可生化性得以大幅提升。水解酸化罐内厌氧污泥床层对废水中有机物进行吸附和截留,污泥中丰富的微生物菌群在厌氧条件下对吸附、截留下来的大分子有机物开环断链,从而提升污水可生化性。具体参见污水宝商城资料或更多相关技术文档。
4 结论
(1)通过新增曝气生物滤池及水解酸化处理单元,并对臭氧氧化实施改造后,可确保污水处理厂出水水质平稳达标排放。
(2)曝气生物滤池抗冲击负荷能力强,进水COD为 3000~5500mg/L波动条件下,出水 COD平稳(COD<2000mg/L),从而确保后续处理单元在原设计工况下平稳运行。
(3)曝气生物滤池大幅削减废水有机污染物,对 COD去除率可达 77.8%。
(4)水解酸化提升曝气生物滤池出水可生化性,同时具有“水质稳定器”作用。
(5)装填催化剂的臭氧氧化塔,COD去除率可达 69.4%,污水处理厂出水 COD基本实现小于 60mg/L,平稳达标。
回转磁悬浮风机 磁悬浮风机流量 济南磁悬浮风机厂家 磁悬浮风机安装位置
咨询电话:400-966-0628
