空气悬浮风机|磁悬浮鼓风机|-森兹风机官网

您当前的位置:空气悬浮风机首页 > 新闻中心 >
新闻中心

空气悬浮风机振动测点_磁悬浮风机

时间:2021-08-03 01:16  来源:森兹原创

空气悬浮风机振动测点:空气悬浮风机振动、发热、异响故障原因分析及处理方法

  空气悬浮风机主要由机壳、墙板、叶轮、进出口消声器等4大部分组成。

  机壳:主要用来支撑墙板、叶轮、消声器和固定的作用。

  墙板:主要用来连接机壳与叶轮,并支撑叶轮的旋转,以及起到端面密封的效果。

  叶轮:是空气悬浮风机的旋转部分,分两叶和三叶,现在由于三叶的比两叶的出气脉动小、噪声小,运转平稳等很多优点,已逐渐代替两叶空气悬浮风机。

  消声器:用减小空气悬浮风机的进、出由于气流脉动产生的噪音。

  空气悬浮风机是通过叶轮轴主动齿带动从动齿同步相向旋转,从而使两叶轮之间和叶轮与墙板,叶轮与机壳之间皆具有适当的工作间隙,形成吸气和排气腔体。通过风机转子旋转,形成无内压缩地将机体内气体由进气到排气腔后排出机体,以达到鼓风目的。

  为了保证空气悬浮风机的正常运转,必须使两叶轮之间、叶轮与墙板之间、叶轮与机壳之间均保持一定的间隙。

  若间隙过大,会出现被压缩出去的气体通过间隙部分倒流回来,造成风机作功损耗,通常会显现出来的问题是不便于调节。

  若间隙过小,则由于转子、机壳受热膨胀,可能导致两叶轮之间、叶轮与墙板之间、叶轮与机壳之间出现相互摩擦现象,造成机壳与转子的磨损电机负载增大。

  空气悬浮风机主要由双列角接触球轴承、齿轮副、八字叶轮、墙板、机壳等部件组成,其产生振动、发热、异音的主要原因是其主要部件在装配中因加工误差或装配不到位所产生的。

  1)齿轮副

  空气悬浮风机的运行是依靠主动齿带动从动齿同步相向旋转,带动叶轮旋转从而实现鼓风作用。因此,齿轮副中心距、齿轮箱轴孔中心距加工产生的形位误差是造成空气悬浮风机振动、发热、异音的主要原因。

  2)轴承轴向游隙调整不到位、轴承座磨损造成风机振动

  当发现风机振动突然增大时,首先用听音棒听轴承转动是否有异音,轴承室是否发热,轴承轴向间隙是否调整合理。这几点问题均会影响风机振动。

  3)叶轮

  空气悬浮风机的两叶轮相互之间、叶轮与墙板之间以及叶轮与机壳之间均应保持一定的间隙,以保证空气悬浮风机的正常运转。通常在维修过程中用塞尺进行间隙测量会发现间隙过小,主要是检修人员没有对从动齿轮齿轮圈与齿轮毂之间的定位销进行调整,出现定位作用失效,从而导致风机的振动、发热等异常情况的出现。

  1)解决空气悬浮风机齿轮副中心距偏差与齿轮箱轴孔中心距偏差的方法

  虽然通过测量和理论性的推算验证了这种误差的存在,但是由于设备制造中已经确定了空气悬浮风机齿轮中心距之间的配合偏差、齿轮轴线平行度误差、齿轮箱轴孔中心距偏差以及齿轮箱轴孔轴线平行度误差,因此在维修中无法调整误差。解决这些误差只有成对更换风机齿轮、叶轮轴,降低或消除齿轮齿侧间隙,消除此类故障。

  2)轴承轴向游隙调整不到位、轴承座磨损造成风机振动的解决方法

  首先要检查轴承滚动体、弹道的磨损情况,再对滚动轴承游隙进行测量,看是否存在轴承轴向定位不佳,通常对轴承端盖加减垫子压铅的方法来调整轴向间隙。若均在标准值范围内,取下轴承检查轴承是否存在跑外圈情况,若发现轴承室有磨损痕迹,可使用环氧树脂、配一定量的邻苯二甲酸、乙二胺进行粘接固定,可以消除此类故障。

  3)通过调整从动齿定位销位置来实现叶轮、墙板、机壳之间的间隙调整的方法

  从动齿轮是由齿轮圈和齿轮毂组成,从动齿上的定位销就是为了调节间隙而设计的。检修空气悬浮风机时,在安装齿轮副前不要固定从动齿轮的齿轮圈与齿轮毂之间的定位销,先把从动齿轮装入风机中。

  此时主动齿轮与从动齿轮配合通过联轴器手动盘车,调整齿轮副间隙以及之间叶轮的间隙,待间隙调整好后,将从动齿轮的齿轮圈与齿轮毂锁紧螺栓紧固,整体从设备中拆除,重新选择定位孔位置配钻,此时得到的定位孔才是风机目前的精确定位尺寸,如图2所示。

  安装后可将两叶轮倾斜45°将从动齿轮对准主动齿轮压入轴上,依次装入齿轮挡圈、齿轮垫圈和锁紧螺母。进行盘车,若不能转动,叶轮回转再调整齿轮的位置,直到转动灵活没有刮蹭或死点。

  此时紧固锁紧螺母,并在两叶轮之间用塞尺进行测量其间隙控制在30至60丝之间,再将从动齿轮的齿轮圈和齿轮毂用锁紧螺母紧固后拆下,在车床上配钻。这样就能准确地确定齿轮副齿侧间隙和叶轮之间的间隙,保证了叶轮与机壳、墙板之间的间隙符合设计标准。

  空气悬浮风机在维护保养过程中,以上三方面着手制定详细的检修标准和方案,可有效减少振动、发热、异音等故障的发生。欢迎留言沟通您遇到的问题。

空气悬浮风机振动测点:空气悬浮风机轴振动在线监测的检测点设置

  原标题:空气悬浮风机轴振动在线监测的检测点设置

  山东锦工有限公司是一家专业生产磁悬浮风机、罗茨真空泵、回转风机等机械设备公司,位于有“铁匠之乡”之称的山东省章丘市相公镇,近年来,锦工致力于新产品的研发,新产品双油箱空气悬浮风机、水冷空气悬浮风机、油驱空气悬浮风机、低噪音空气悬浮风机,赢得了市场好评和认可。

  空气悬浮风机是大型旋转型工业设备,转轴是其核心部件,由于转速高,负荷大,是故障易发区。一旦发生故障,将危及设备和附近工作人员的安全,并造成磁悬浮风机损毁及整个生产流程的中断,带来巨大的经济损失。

  振动是转轴故障的主要表现形式,在其故障发生初期,即可出现振动异常的情况。因此设置在线监测系统,对轴振动进行24小时监测,可及时发现故障,避免重大事故发生,减小事故危害性。

  要保证监测系统的正常、高效的工作,检测点的正确设置就显得非常重要。 选择最佳的测量点,并选用合适的测振动的传感器,才能够获取充足、可靠地设备运行状态信息,对转轴的运行状态进行正确判断。如果所得的检测信号不真实、不典型,或不能客观的、充分的显示设备的实际状态,那么整个监测系统的运行的可靠性将无法保证。

  2振动的特征和测量部位

  高炉空气悬浮风机是大型旋转型机械设备,它具有转速高、转速恒定、负荷相对平稳等特征,其转轴的振动具有以下特征:1.机组轴系只有两种转速,即低速轴系的电动机转速,和高速轴系的磁悬浮风机转速,因此振动分析针对这两个轴系即可;2.空气悬浮风机是一种透平机械,它的工作介质为空气,正常工作时载荷平稳,因此正常工作状态下冲击振动较少;3.空气悬浮风机属于大功率设备,设备庞大,因此机组发生故障时,振动会表现出极强的非线性特征,一些振动故障用线性分析理论难于解释;4.空气悬浮风机振动受高炉工况影响较大,高炉工况波动较大时,会造成风机机组剧烈振动,甚至引发设备故障;5.由于工作转速在第一临界转速以上,当一些自激频率接近机组固有频率,会引起机组的自激振动。

  转轴的线性振动数学模型为:

  式中 k —— 整个支座的刚度系数,N/m;

  c —— 系统阻尼, N/(m/s);

  m —— 转子质量,kg。

  这是一个二阶常系数线性非齐次微分方程,其解由通解和特解两项组成,即:

  式中 (1)为通解,对应衰减自由振动。

  (2)为特解,对应稳态强迫振动。

  衰减自由振动随时间推移迅速消失,而强迫振动则不受阻尼影响,是一种振动频率和激振力同频的振动。

  风机机组的振动频率与转轴转动频率的关系十分密切,因此转动频率是设备故障诊断中很重要的一个参数。机组发生故障时,根据振动频率的高低,可以粗略地判断出故障的部位。

  能造成机组转轴振动失稳的因素很多,如动压轴承失稳、密封失稳、动静摩擦失稳等,失稳具有突发性,往往会带来严重危害。机组的稳定性在很大程度上决定于滑动轴承的刚度和阻尼。当系统具有正阻尼时,对振动具有抑制作用,振动会逐渐减弱;当系统具有负阻尼时,则具有激振作用;系统阻尼为零时,系统处于稳定临界状态。

  为保证尽早发现故障迹象,尽量避免故障停机造成的经济损失,必须正确选择测量部位,以获得客观、真实、充分的检测信息。

  通过对风机系统的构成,工作特性的分析,故障易发区及故障表现形式的分析,可将风机转轴、变速箱、电动机转自转轴确定为重点监测部位。

  3测量点的确定

  当设备发生故障时,其往往以一定的状态表现出来,而这些状态又包含在特定的信号中,对设备进行状态监测主要是通过获取这些信号然后进行分析,从而确定设备的故障。而要正确及时的获取这些信息,必须通过安装在测量点的传感器来完成,因此测量点选择的正确与否,传感器的选择是否合适,关系到能否对设备故障做出正确的诊断。

  确定测量点数量及方向时考虑了以下几方面:(1)应是设备振动的敏感点;(2)能对设备振动状态做出全面的描述;(3)应是离机械设备核心部位最近的关键点;(4)应是容易产生劣化现象的易损点;(5)不能对设备的原工作状态产生影响。

  经过对监测要求、设备结构、安装维修等方面的考虑,确定测量点分布如图所示,对于高炉空气悬浮风机组,可以在风机转子轴径部位安装电涡流传感器,测量转子的轴振动;在电机侧安装键相传感器,测量转速;在变速箱、主电动机的轴承座部位安装加速度传感器,测量这些部位的振动加速度。

  测轴振动是在一个平面内相互垂直的两个方向分别安装的两个涡流传感器,测转速的键相传感器也是涡流传感器,在电机的转轴上开出健相槽即可。

  温度、油压等相关工艺参数的测量,风机制造厂家在出厂前已经设计安装好,无需另外设置。

  涡流传感器选用美国本特利公司的3300 XL传感器(8mm 电涡流探头),加速度传感器选用美国PCB公司的产品,型号为608A11。将设备的振动信号检测出来后,经过抗干扰的延伸电缆,将信号传送至信号调理仪进行后续处理。

  4结论

  妥善设置各检测点,建立磁悬浮风机在线监测系统,以达到监测设备运行,减少故障的目的。其所得各项数据信息,还可进一步传递到工控机,建立在线故障诊断系统,以达到了解设备的运行状态、预知故障、杜绝事故、延长设备运行周期、缩短维修时间、最大限度的发挥设备的生产潜力,节约成本的目的。

  :

空气悬浮风机振动测点:磁悬浮风机各测点振动图谱.doc

  磁悬浮风机各测点振动图谱风机转速为 990Rpm ,转子为两叶型,主驱动轴及从动轴两端各一套轴承,共计四个测 点。驱动侧轴承型号为 SKF 22224E,自由侧(同步齿轮端)为 SKF NU324E,设备结构图 如图 1。 从动轴驱动侧水平、垂直、轴向振动通频值分别为:10.54mm/s、10.39mm/s 、12.02mm/s 从动轴自由侧水平、垂直、轴向振动通频值分别为:11.22mm/s、15.13mm/s 、12.80mm/s 主动轴驱动侧垂直振动通频值为:12.78mm/s(其余方位无法检测) 主动轴自由侧水平、垂直振动通频值分别为:10.57mm/s、14.19mm/s频谱中主要以 16.5Hz 的转频及多次谐波为主,在个测点中分别以 10X 、4X、8X 频站 主导,因转子为两叶式,运行中转子的啮合频率按理说应是 2 倍频,但是现在不明白 4X、8X、10X 频高的原因是什么,转子在运行中时啮合状态始终如图 1 所示,转子与转子、 转子与机壳之间的间隙均在 0.40-0.50mm 左右,转子凸面旋转至机壳进、出口时或者与壳 体本身是否也存在所谓的啮合状态呢,啮合频率能以 2 倍转频算吗? 图 1图 2:驱动侧从动轴水平方向(3H) 图 3:驱动侧从动轴垂直方向(3V) 图 4:驱动侧从动轴轴向(3A) 图 5:驱动侧主动轴垂直方向(4V)图 6:自由侧从动轴水平方向(5H) 图 7:自由侧从动轴垂直方向(5V) 图 8:自由侧从动轴轴向(5A)图 9:自由侧主动轴水平方向(6H) 图 10:自由侧主动轴垂直方向(6V)

空气悬浮风机振动测点:磁悬浮风机振动(震动)问题大剖析(真的长知识!)

  首先来说一下更新此篇文章的缘由,今天早上有位网友添加我好友,咨询关于振动的问题,该朋友用的是德国锦工的空气悬浮风机,但是空气悬浮风机的振动很大,没有找到原因,也没有找到合理的解决办法,我告诉他联系厂家进行修复,该网友说到这是刚修复过的,因甲方不同意该振动幅度,所以该网友也很焦虑,锦工风机小编还是建议其继续联系原厂家进行修复处理,因为德国锦工属于比较知名的空气悬浮风机企业,一台锦工空气悬浮风机在国内出售的价格较为昂贵,技术也不会差,如果是机器本身的问题,联系原厂进行维修会更好一些。磁悬浮风机厂家

  锦工风机小编了解到这样的情况之后,也查了很多资料,发现有很多网友也遇到过很多这样的问题,下面锦工风机小编将这些资料整理一下,然后分享出来,让大家涨涨姿势,也许以后会用得着。

  引起磁悬浮风机振动大的因素较多,主要原因有以下几种:

  1、地脚螺栓松动,主要表现在垂直方向振动较大。

  2、联轴器找正不合格,表现有三点:一是轴向振动较大,二是与联轴器靠近的轴承振动较大,三是振动程度与负荷关系较大。

  3、风机基础刚度差,故障特征为:一是振动频率为工频,振动时域波形为正弦波,二是垂直方向振动速度异常。

  4、与风机连接的管道配置不合理,主要是与风机连接的防振接头老化,管道与风机形成共振。

  5、同步齿轮啮合间隙大,齿面接触精度不够,也可导致水平振动超标。

  6、转子不平衡,振动表现为:一是水平方向振动较大,且振动频率与转速同频,二是振动大小与机组负荷无关。

  7、轴承损坏及轴系零件松动,主要表现在:一是轴承温度高并有异响,二是水平、轴向、垂直振动都有异常。

  以上是磁悬浮风机振动的一些原因,但是不是全部原因,引起磁悬浮风机振动的原因有很多,不单单是几条能够完成的。锦工风机小编还和大家整理一些网友的讨论知识,也把这些给汇总了一下,看能否帮助到大家:

  提问者说:型号:两叶的空气悬浮风机,型号RRE250,额定风压68kpa,电机直联传动,联轴器是弹性柱销套式。

  问题:振动大不止一次了,上次因振动大,壳体、转子出现裂纹,直接返厂维修的,组装后厂家试车,出口压力到60kpa,振动速度为7.1mm/s。

  现场情况:而回到现场后,把出口管路脱开直接排空,振动速度只有3.1mm/s。可出口加压到30kpa左右时,振动就到了临界值11.2mm/s(水平方向振动高),加压到50kpa时,水平方向振动速度就到了15mm/s。

  附注:联轴器对中数据是符合标准的,基础也重新做过,比起厂家刚出厂时的基础要强多了。

  请各位给分析分析原因,有没有碰到过类似的情况呢?

  路人甲说:空载时,风机振动很小。随着负荷增大,振动也增大。这种现象,有可能是松动引起的,我讲的松动,不是地脚螺栓松动(这,可明显发现),而是配合松动,松动引起风机两个轴平行不对中,引发振动,即随负荷增大,振动增加。查一查与风机的轴承配合的轴,与轴承配合的孔的间隙。最主要的是:测一测振动频谱和振动相位,大家用频谱和相位为你分析风机产生振动故障真正原因。

  提问者回答:修理过程都作过检查,包括配合间隙、轴承磨损情况和同步齿轮配合情况,也都符合标准啊。也看不到轴承跑外圈或跑内圈的情况。还有,在厂家试车时,排压上去之后也没有振动。到了现场反而不行了.接了像厂家试车时一样的试车管路也一样振动偏大。在风机振动是14mm/s时,基础水平振动大约在8mm/s,但垂直振速不是很高,又不像是基础刚性不足。现在是联系厂家,希望能给些指导了。

  底座的地脚螺栓已经灌浆与基础一体了,而且底座是重新制作加固过的,比出厂所配底座要好多了。所以试到现在,也没有重点怀疑底座。今天按厂家的意见把橡胶波纹管拆掉,排气短管直接连风机排气法兰,然后试车到排压50kpa,风机振动速度降到了8mm/s!看来是橡胶波纹管有问题,现在准备把橡胶波纹管换到排气的消音器后面安装,再试试看。

  路人乙说道:1、钢架比较单薄,按经验把钢架肚子里灌满。这个好像是自己焊接制造的吧。同时我注意到机器的宽度造成它的脚不在钢架的支架上,而在非常单薄的钢板上(下面空的)

  2、作为风机,可以用橡胶管,但是管道必须固定死。我们不提倡用橡胶软管连接。空气悬浮风机出口压力还是有波动的哟。而且你照片中的管道根本没有固定,只有支撑、TAP块调节高度。

  3、空气悬浮风机容易疏忽的是同步齿的啮合间隙、齿轮与轴连接处键槽的准确度决定了主副转子的相对90度角的准确。

  注意到:根据你的震动数据,有共振的嫌疑。所以建议:1、灌满浆;2、管道硬连接;3、管道支撑尤其靠近风机的管道一定要固定死。

  提问者回复道:硬连接时是合格的,指示空气悬浮风机允许硬连接么,不是都要加弹性接头缓冲么,不然管道热胀冷缩是不是对风机有影响。

  根据这一系列的试车情况,我也感觉应该是基础有问题,后来没有对基础做修改,而是一直研究管道问题,先是做了大小头,降低出口的空气流速,试车振动超标;后来增加了4个立方的缓冲罐,接在风机后,打地脚螺栓固定,试车振动依然超标。现在准备再重新买台进口的,选到了锦工的三叶风机,人家的风机就宣称不需要地脚螺栓,整个机组直接放在混凝土水泥地面上就可以了。

  除了基础可能有问题外,还感觉国产的双叶空气悬浮风机在刚性设计上还是有问题,我们的风机是厂家RRE250系列里风量和风压最大的,可能刚度不好。

  路人丙说道:检查一下轴向窜量,我刚解决过一个一个类似的问题,如前面的路人说的一样,如果你不参与检修,发现原因可能很困难。我解决的一个问题就是我自己亲自测绘并计算,彻底解决了10年的一个老问题。

  根据叙述,我猜测的原因,你的轴向窜量可能有问题,你的轴承定位不好,在运转时,随着压力的增大,你的振动烈度必然随着出口压力的增大而增大。你从轴承座开始一步一步的测绘,将两轴承的定位余量留出0.1mm左右,当然根据你的现场物料的温度确定,查查看看,应该可以解决问题。

  认认真真读完这篇文章,我能够从中发现很多有用的知识,如果您有磁悬浮风机维修的问题,或者有采购风机的问题,可以联系我们的官方客服热线

  :

  >>空气悬浮风机出口不装止回阀反流有什么后果

  >>氧化风机电流高的原因是什么?-锦工风机

  >>山东风机厂家有哪些?2180家风机品牌汇总(独家)!

  >>磁悬浮风机是哪里的?起源与发展!-锦工风机

  >>水处理曝气过程中,您是否也遇到这样的问题?

磁悬浮风机结构 磁悬浮风机的工作的原理 磁悬浮风机有工作原理

咨询电话:400-966-0628


优质罗茨风机供应商_森兹风机
版权所有:Copright © www.sdroo.com 森兹风机 地址:山东省淄博市沂源经济开发区
电话:400-966-0268 E-mail: sdroo@163.com 网站地图 备案号:鲁ICP备11005584号-9
空气悬浮风机咨询电话